Hamilton College Lab Pushes The Rare Earth Element Envelope Exploring Applications For Brighter Lights

The Brewer group of students explored the fluorescence of doping rare earth chelated molecules and nanoparticles into silica sol-gel glasses using a post-annealing immersion method. This process involves preparing silica glass the size of beads through a solution-gelation method to obtain porous glass. The pores in the glass can then be used to accommodate luminous rare earth species through soaking them in solutions of rare earth doped materials (as complexes, nanoparticles, and as polymer-bound).

Erin Walicki ’20 closely studied the effect on the fluorescence of the glasses by varying the soak time and the concentration of europium chelates, both as monomers and as incorporated into an organic-silica polymer network.

Melissa Woodward ’19 investigated the incorporation of europium chelated molecules which are bound to short chain organic polymers into the porous glasses and compared the fluorescence properties of the complexes and monomers with that of the europium-containing organic-based polymers.

Liam Bradley ’19 focused on synthesizing and characterizing europium-doped titanium oxide nanocrystals through the solvothermal method and exploring the methods that might be used to incorporate them into porous sol-gel glass.

Karen Brewer’s main research project has been in collaboration with Hamilton Physics Professor Ann Silversmith and Professor Dan Boye of Davidson College. In Brewer’s chemistry lab, students create glass that contains rare earth ions that have interesting spectroscopic properties. The glass is then probed in the laser spectroscopy labs in physics. Her research has been funded by the Research Corporation and the Petroleum Research Fund of the American Chemical Society. She came to Hamilton College in 1989 and teaches undergraduate courses in advanced and intermediate inorganic chemistry and general chemistry. Brewer earned a doctorate from Massachusetts Institute of Technology.


Please follow and like us:

Hits: 33

Leave a Reply

Your email address will not be published. Required fields are marked *